

Introduction..3
UID (User Identifier)...4
RUID (Real User ID)... 5
EUID (Effective User ID).. 6
SUID (Saved User ID)...7
GID (Group Identifier)..8
EGID (Effective Group ID)... 9
RGID (Real Group ID).. 10
SGID (Saved Group ID)..11
File Permissions.. 12
umask (Set File Mode Creation Mask)... 13
File Permissions are Not Cumulative.. 14
Sticky Bit.. 15
SUID Bit (Set User ID)..16
SGID Bit (Set Group ID)...17
ASLR (Address Space Layout Randomization)..18
ASLR in Statically Linked ELFs..19
SAS (Secure Attention Sequence)... 20
Secure Computing Mode (seccomp)... 21
Linux Security Modules (LSM)... 22
LoadPin...23
SafeSetID..24
Yama... 25
Keyrings... 26
AppArmor (Application Armor).. 27
Primary Groups..28
Secondary Group...29
ACL (Access Control Lists).. 30
PAM (Pluggable Authentication Module)...31
Capabilities...32
chroot (Change Root Directory)...34
NetFilter.. 35
Chains (iptables)..36
Table Types (iptables)... 37
nftables...38
Secure Execution Mode.. 39
su (Substitute User)...40

2

UID (User Identifier)
UID stands for “User Identifier”, it is a number associated with each Linux user in order to
represent it in the Linux kernel. We can think about it like SID1 in Windows which uniquely
identifies a security principal. We can see the UID for a specific user defined in “/etc/passwd”.

In most Linux distributions UIDs 1-500 are reserved for system users, while in distributions like
Ubuntu/Fedora the UID for a new user starts from 1000 - by default, the UID of root is 02.
Moreover, we can also change the UID of a user with the “usermod”3 command in the following
manner: “sudo usermod -u [NEW_UID] [USER_NAME]” - as shown in the screenshot below.
Also, all processes executed by the user will get its UID - more on that in a future writeup.

Lastly, it is important to understand that there are three different types of UID: EUID (Effective
UID), RUID (Real UID) and SUID (Saved UID).

3 https://linux.die.net/man/8/usermod
2 https://linuxhandbook.com/uid-linux/
1 https://medium.com/@boutnaru/windows-security-sid-security-identifier-d5a27567d4e5

4

RUID (Real User ID)
RUID stands for “Real UserID”, which is the user who initiated a specific operation4. Thus, we
can say that it is basically the UID5 of the user that started the specific task/process6.Overall,
RUID is the “uid” field of the Linux’s “struct cred” data structure7. This information is also
included as part of the “Auxiliary Vector”8 in the “AT_UID” entry9.

Moreover, there could be specific syscalls that use only the real uid/group id (and not the
effective uid - which I am going to detail about in a future writeup), one example of that is
access10.

Lastly, another example of usage is by the “passwd” command line utility11. When executing it
gets the permissions of the root user. However, due to the fact the “real uid” is not changed by
using a “suid bit”12 we can’t change the password of a user which is not us (unless we are the
“root” user) - as shown in the screenshot below.

12 https://medium.com/@boutnaru/linux-security-suid-bit-d4f553e7d99e
11 https://man7.org/linux/man-pages/man1/passwd.1.html
10 https://elixir.bootlin.com/linux/v6.5.8/source/fs/open.c#L368
9 https://elixir.bootlin.com/linux/v6.5.8/source/include/uapi/linux/auxvec.h#L20
8 https://medium.com/@boutnaru/linux-the-auxiliary-vector-auxv-cba527871b50
7 https://elixir.bootlin.com/linux/v6.5.8/source/include/linux/cred.h#L119
6 https://www.geeksforgeeks.org/real-effective-and-saved-userid-in-linux/
5 https://medium.com/@boutnaru/the-linux-security-journey-uid-user-identifier-2f11bcf90ee8
4 https://linuxhint.com/difference-between-real-effective-user-id-in-linux-os/

5

EUID (Effective User ID)
EUID (Effective User ID) is what is mostly used for determining the permissions of a certain
task (process/thread) in a Linux system13. By default, the EUID is equal to the value of RUID,
there are also use cases in which those two are different14.

Moreover, there are use cases in which the EUID is different than the RUID for enabling a
non-privileged user to access files which are accessed only by privileged users like root15. For
example the case of the utility “passwd” that needs to alter “/etc/shadow” when the user changes
a password - as shown in the screenshot below.

Lastly, the EUID is stored in the “euid” field of “struct cred”16 that is pointed from the PCB
(Process Control Block)/TCB (Thread Control Block) data structure in Linux, which is “struct
task_struct”17.

17 https://medium.com/@boutnaru/linux-kernel-task-struct-829f51d97275
16 https://elixir.bootlin.com/linux/v6.8/source/include/linux/cred.h#L117
15 https://www.geeksforgeeks.org/real-effective-and-saved-userid-in-linux/
14 https://medium.com/@boutnaru/the-linux-security-journey-ruid-real-user-id-b23abcbca9c6
13 https://linuxhandbook.com/uid-linux/

6

SUID (Saved User ID)
In this context SUID stands for “Saved User ID” (and it is different from SUID bit18). It is used
when we have a task (process/thread) execuring with high privilege (such as root, but not
limited to that) which needs to do something in an unprivileged manner. Due to the fact, we want
to work in a “least privilege” principle19, we need to use the high privileges only when it is a
must.

Thus, we use the SUID in order to save the EUID20 and then do the change which causes the
task to execute as an unprivileged user. After finishing the operation/s the EUID is taken back
from the SUID21.

Lastly, we can use the “setresuid” syscall for setting a different value between EUID and SUID22
- as shown in the screenshot below. We can see that we can set euid=0 if our suid=0 but we can’t
do that if suid!=0.

22 https://man7.org/linux/man-pages/man2/setresuid.2.html
21 https://stackoverflow.com/questions/32455684/difference-between-real-user-id-effective-user-id-and-saved-user-id
20 https://medium.com/@boutnaru/the-linux-security-journey-euid-effective-user-id-65f351532b79
19 https://www.techtarget.com/searchsecurity/definition/principle-of-least-privilege-POLP
18 https://medium.com/@boutnaru/linux-security-suid-bit-d4f553e7d99e

7

GID (Group Identifier)
GID stands for “Group Identifier”, it is a number associated with each Linux group in order to
represent it in the Linux kernel. We can think about it like SID23 in Windows which uniquely
identifies a security principal. We can see the GID for a specific group defined in “/etc/group”.

Moreover, by using groups we can manage which resources users of a group can access. We can
get the GID of a group using the “getent” command line utility24 - as shown in the screenshot
below. For creating a new group we can use the “groupadd”25 command line utility - as also
shown in the screenshot below.

Also, there are Linux distributions that reserve the GID range 0-99 for statically

allocated groups, and either 100−499 or 100−999 for groups

dynamically allocated by the system in post-installation scripts.

These ranges are often specified in /etc/login.defs26 - as shown in the screenshot
below.

Lastly,it is important to understand that there are three different types of GID: EGUID (Effective
GID), RGID (Real GID) and SGID (Saved GID).

26 https://en.wikipedia.org/wiki/Group_identifier
25 https://linux.die.net/man/8/groupadd
24 https://man7.org/linux/man-pages/man1/getent.1.html
23 https://medium.com/@boutnaru/windows-security-sid-security-identifier-d5a27567d4e5

8

EGID (Effective Group ID)
As with EUID27 we also have EGID (Effective Group ID). It is what is mostly used for
determining the permissions of a certain task (process/thread) in a Linux system in the sense of
group membership.

Moreover, there are use cases in which the EGID is different from the RGID (Real Group ID) for
enabling a non-privileged user to access files which are accessed only by privileged users like
root. We can access the EGID using the inside the kernel using the “current_egid” macro28.

Lastly, we can use the “id”29 command line utility for printing the effective group ID. Also, from
user mode we can use the “getegid()” system call to retrieve the effective group id of the calling
process/task30. There is also a library call with the same name31 - as shown in the screenshot
below taken using copy.sh32.

32 https://copy.sh/v86/?profile=archlinux
31 https://man7.org/linux/man-pages/man3/getegid.3p.html
30 https://linux.die.net/man/2/getegid
29 https://linux.die.net/man/1/id
28 https://elixir.bootlin.com/linux/v6.9.5/source/include/linux/cred.h#L375
27 https://medium.com/@boutnaru/the-linux-security-journey-euid-effective-user-id-65f351532b79

9

RGID (Real Group ID)
RGID stands for “Real Group ID”, which is the main group of the user who initiated a specific
operation. Thus, we can say that it is basically the GID33 of the user that started the specific
task/process34. Overall, RUID is the “uid” field of the Linux’s “struct cred” data structure35. This
information is also included as part of the “Auxiliary Vector”36 in the “AT_UID” entry37.

Moreover, there could be specific syscalls that use only the real uid/group id (and not the
effective uid - which I am going to detail about in a future writeup), one example of that is
access38.

Lastly, another example of usage is by the “passwd” command line utility39. When executing it
gets the permissions of the root user. However, due to the fact the “real uid” is not changed by
using a “suid bit”40 we can’t change the password of a user which is not us (unless we are the
“root” user) - as shown in the screenshot below.

40 https://medium.com/@boutnaru/linux-security-suid-bit-d4f553e7d99e
39 https://man7.org/linux/man-pages/man1/passwd.1.html
38 https://elixir.bootlin.com/linux/v6.5.8/source/fs/open.c#L368
37 https://elixir.bootlin.com/linux/v6.5.8/source/include/uapi/linux/auxvec.h#L20
36 https://medium.com/@boutnaru/linux-the-auxiliary-vector-auxv-cba527871b50
35 https://elixir.bootlin.com/linux/v6.5.8/source/include/linux/cred.h#L119
34 https://www.geeksforgeeks.org/real-effective-and-saved-userid-in-linux/
33 https://medium.com/@boutnaru/the-linux-security-journey-gid-group-identifier-c38e8e25c221

10

SGID (Saved Group ID)
In this context SGID stands for “Saved Group ID” (and it is different from SGID bit). It is used
when we have a task (process/thread) executing with high privilege (such as root, but not
limited to that) which needs to do something in an unprivileged manner. Due to the fact, we want
to work in a “least privilege” principle41, we need to use the high privileges only when it is a
must.

Thus, we use the SGID in order to save the EGID42 and then do the change which causes the
task to execute as an unprivileged user. After finishing the operation/s the EGID is taken back
from the SGID.

Lastly, we can use the “setresgid” syscall for setting a different value between EGID and SGID43.
We can egid=0 if our sgid=0 but we can’t do that if sgid!=0. Thus, SGID uses the same concepts
as SGID44. SGID is also an attribute saved as part of the “struct cred”45 - as shown in the
screenshot below.

45 https://github.com/torvalds/linux/blob/master/include/linux/cred.h
44 https://www.linux.org/threads/linux-ids.10213/
43 https://linux.die.net/man/2/setresgid
42 https://medium.com/@boutnaru/the-linux-security-journey-egid-effective-group-id-bda1c56b4995
41 https://www.techtarget.com/searchsecurity/definition/principle-of-least-privilege-POLP

11

File Permissions
As you probably know there is a basic saying in Linux: “everything is a file”, so it's no surprise
that file permissions are core to the security model used by Linux systems. By using them we can
define who can access files/directories. In general, we have three levels of permissions: read,
write and execute46.

Overall, every file/directory in Linux (in case the filesystem supports permissions) has as part of
its metadata three categories of ownership: user, group and other. User, is the owner of the file
which by default is the one that created it. Group, it is the primary group47 of the user when the
file/directory was created. Other, which applies to all other users in the system48.

Moreover, we can view those permissions using the “-l” switch of the “ls”49 command - as shown
in the screenshot below. There are also special permissions SUID50, SGID51 and sticky bit52 -
demonstrated below.

Lastly, we can change the permissions of files (aka file mode bits) using the “chmod” command,
this can be done using the form “[ugoa]*([-+=]([rwxXst]*|[ugo]))+”53 - as shown in the example
below. By the way, we can also use numeric values for setting the permissions where “read=4”,
“write=2” and execute=1” - example is also shown in the screenshot below. Also,
SUID/GUID/Sticky can be defined by adding a fourth number where “SUID=4”, “SGID=2” and
“Sticky bit=1” - also shown in the example below.

53 https://linux.die.net/man/1/chmod
52 https://medium.com/@boutnaru/linux-security-sticky-bit-ccb0aaf3c019
51 https://medium.com/@boutnaru/the-linux-security-journey-sgid-bit-set-group-id-c9b82a2ce019
50 https://medium.com/@boutnaru/linux-security-suid-bit-d4f553e7d99e
49 https://man7.org/linux/man-pages/man1/ls.1.html
48 https://www.linuxfoundation.org/blog/blog/classic-sysadmin-understanding-linux-file-permissions
47 https://medium.com/@boutnaru/the-linux-security-journey-primary-groups-de2b4d6bd27b
46 https://www.redhat.com/sysadmin/linux-file-permissions-explained

12

umask (Set File Mode Creation Mask)
When creating a new file/directory the default file mode permissions54 are 666 (rw-rw-rw),
however those permissions are masked/filtered by the umask (Set File Mode Creation Mask)
value. Thus, if we have “umask=0022” the permissions of a newly created file is set to 644
(rw-r--r--). In case of “umask=0077” the permissions of a newly created file is set to 600
(rw------) and for “umask=0000” we get 666 (rw-rw-rw-) - as shown in the screenshot below.

Overall, “umaks” is a system call used for setting the file mode creation mask. This system call
always succeeds and the previous value of the mask is returned. “umask” is used by in
conjunction with syscalls like “open”55 and “mkdir56.

Moreover, as opposed to the “chmod”57 syscall which affects the permissions of a specific
file/directory “umask” affects every file/directory created by the user. In most Linux distributions
the “umask” value are configured in system wide configuration files like: “/etc/profile” or
“/etc/bash.bashrc”58.

Lastly, based on the shell environment used, “umask” can be a dedicated binary or a builtin
command of the shell. There are case in which “umask” binary is used we can just read the value
and not change it, because it will change it for a different process session, so for altering the
umask value in those cases the builtin shell command is need59.

59 https://docs.oracle.com/cd/E19455-01/806-0624/6j9vek5ja/index.html
58 https://www.liquidweb.com/kb/what-is-umask-and-how-to-use-it-effectively/
57 https://man7.org/linux/man-pages/man2/chmod.2.html
56 https://man7.org/linux/man-pages/man2/mkdir.2.html
55 https://man7.org/linux/man-pages/man2/open.2.html
54 https://medium.com/@boutnaru/the-linux-security-journey-file-permissions-033cb3ce8547

13

File Permissions are Not Cumulative
As opposed to what we might think, file permissions60 under Linux are not cumulative. For
example if we have a file that our user only has “read” permission and our primary group61 has
“read and write” permissions we will still just get the “read” permission. Even if any other user
has full permissions to the file we won’t be able to alter it - as shown in the screenshot below.

Thus, we can say that the permissions are checked in the following order: user, group and other.
In case there are any permissions given to the subject accessing the object (file/directory) the
check is stopped and by that file permissions are not cumulative - as demonstrated below.

Lastly, this fact is not relevant for the “root” user due to the fact it has the capability
“CAP_DAC_OVERRIDE”62, which overrides the read/write/execute file permission check - as
also shown below. This is of course relevant for any user holding that capability.

62 https://man7.org/linux/man-pages/man7/capabilities.7.html
61 https://medium.com/@boutnaru/the-linux-security-journey-primary-groups-de2b4d6bd27b
60 https://medium.com/@boutnaru/the-linux-security-journey-file-permissions-033cb3ce8547

14

Sticky Bit
Beside the ordinary permissions that a file/directory can have in Linux (read, write & execute)
we can also assign specific permissions bits that have a special meaning: suid, sgid and sticky
bit.

Have you ever asked yourself what the “t” in the output of “ls -l” stands for? (as you can see in
the screenshot below taken from copy.sh). As you can see everyone can read and write to
“/tmp”, but in the place of “execute” there is a “t” (and not an “x”) - it means “sticky bit”.

The goal of “sticky bit” when setting it on a directory is to allow the removal of files in the
directory only by their owner. You can see a full demonstration of that in the image below. As
shown even if the file (/tmp/test1_file) has full permissions for everyone it still can’t be deleted
by the user test2 (by the way the permissions of the file are not relevant as we will show in a
different writeup).

15

SUID Bit (Set User ID)
Beside the ordinary permissions that a file/directory can have in Linux (read, write & execute)
we can also assign specific permissions bits that have a special meaning: suid, sgid and sticky
bit.

Have you ever asked yourself what the “s” in the output of “ls -l” stands for? As you can see in
the screenshot below taken from an Ubuntu 22.04 VM regarding the “passwd” executable.

If we have a file with a “suid bit” it will be executed using the permissions of the owner of the
file. It is important to understand that it sets the “euid” but not “ruid” - As you can see in the
screenshot below. Information about “euid”, “ruid”, “fsuid” and more are going to be covered as
part of the description about “struct cred”63 in the future.

For now all you need to know is that “euid” (Effective UID) is used for most of the permissions
checks and “ruid” (Real UID) is the uid (User Identifier) of the user that started the executable.
Due to that even though “passwd” runs using root it does not allow changing a password that is
not the one that started it (despite root that can change any user's password).

63 https://elixir.bootlin.com/linux/latest/source/include/linux/cred.h#L110

16

SGID Bit (Set Group ID)

SGID is a special permission, its meaning is based if it is set on a file or a directory. If it is set on
a file it allows the file to be executed with the permissions of the group that owns the tile file - it
is similar to SUID which does the same with the user that owns the file64. In case of a directory,
if we set the SGID bit, any files created in the directory will have their group ownership set to
that of the directory owner65.

Thus, this permission is marked with “s” in the location that specifies the “execute” permission.
In order to set SGID we can use the “chmod”66 command, after doing so the execute indication
“x” in the group portion is going to change to “s”.

This can be verified using the “-l” switch of the “ls”67 command - as shown in the screenshot
below. By the way, if we remove the execute permission the indication is changed from “s” to
“S” - as also shown in the screenshot below.

Lastly, as with the normal permissions in which we have the numeric system for
setting/removing them by using a 3 numbers, by adding another one we can also specify the
other special permissions68. For setting the SGID bit we can you a number in the pattern of 2xyz,
where x/y/z are 1 or 2 or 469.

69 https://www.liquidweb.com/kb/how-do-i-set-up-setuid-setgid-and-sticky-bits-on-linux/
68 https://www.theserverside.com/blog/Coffee-Talk-Java-News-Stories-and-Opinions/how-permissions-chmod-with-numbers-command-explained-777-rwx-unix
67 https://man7.org/linux/man-pages/man1/ls.1.html
66 https://linux.die.net/man/1/chmod
65 https://www.redhat.com/sysadmin/suid-sgid-sticky-bit
64 https://medium.com/@boutnaru/linux-security-suid-bit-d4f553e7d99e

17

ASLR (Address Space Layout Randomization)

ASLR is a mitigation techniques used to increase the difficulty of running arbitrary code in case
of an exploitation of a memory corruption vulnerability such as a buffer overflow (We will go
over it in a different writeup but you can read the first article about it from phrack70 magazine.

Basically what ASLR does is to randomly select the base address of the executable, it also
randomizes the heap, stack and loaded libraries. Thus, in case an attacker can control the flow of
execution (such as controlling the instruction pointer), the location of the arbitrary code to
execute is unknown.

In order for ASLR to work we need support in the OS (mostly the loader of executables) and in
the executable itself, it should be compiled as PIE (position independent code) and have support
relocations (in case of absolute addressing used). More on PIE and relocations in future writeups.

There are several limitations in case of ASLR, some of them are general and some of them are
relevant for only specific implementations. In that sense different operating systems support
ASLR in different manners. For example, in Linux the base address is randomized every call to a
syscall from the family of execve() (‘man 2 execve'). Thus, if we just use fork() the base address
won’t change. The screenshot below shows the difference between the address of libc between
two executions of the command “ls”. We will dive more into specific OS implementations in the
future. Also, ASLR is not relevant to other attack types such as “Data Only” (more on them in
the future).

You have to remember that there are several ways to bypass ASLR (depending on the OS and
other factors). You can search online for those techniques or wait for the next writeup. Also,
although there are bypasses, ASLR is a must in my opinion.
Lastly, there is also an ASLR version for the kernel itself, it is usually called KSLR (Kernel
Space Layout Randomization).

70 http://phrack.org/issues/49/14.html

18

ASLR in Statically Linked ELFs

When compiling code to a statically linked ELF we bake all the code our binary needs from
shared libraries inside our own executable71. The question which arises is how and if it effects the
ASLR72 posture of the process executing the statically linked binary?

Thus, as we can see in the screenshot below when linking the binary statically (using “-static”)
any time we execute it the addresses of the stack/heap/vdso/vvar memory regions are
randomized. However, the memory regions mapped from the binary are not randomized.

In order to fix this we can use “-static-pie” which can load the memory regions mapped for the
statically linked binary to randomized addresses without the need of the dynamic linker73. We
can also see that in the screenshot below.

73 https://patchwork.ozlabs.org/project/gcc/patch/20170808221841.GA16793@gmail.com/#1758721
72 https://medium.com/@boutnaru/security-aslr-address-space-layout-randomization-part-1-overview-3aec7fec01e0
71 https://www.ibm.com/docs/en/openxl-c-and-cpp-aix/17.1.0?topic=cc-dynamic-static-linking

19

SAS (Secure Attention Sequence)
SAS (sometimes called SAK - “Secure Attention Key”) is a special key sequence/combination
that triggers the opening of the login screen. The goal of SAS is to make sure that the login
screen is not spoofed. Due to the fact that the OS interacts with the hardware it can detect the
SAS (think about keyboard interrupts) and then suspend any application and run the login
screen74 - As shown in the diagram below.

If you want to read about the support of Linux (kernel 2.4.2) for SAS75 (SAK in the
documentation). This concept is also relevant for other operating systems like Windows76.

76 https://security.stackexchange.com/questions/152556/why-does-windows-10-not-have-the-secure-attention-key-as-default
75 https://www.kernel.org/doc/Documentation/SAK.txt
74 https://en.wikipedia.org/wiki/Secure_attention_key

20

Secure Computing Mode (seccomp)

“Secure Computing Mode” (seccomp) is a Linux kernel feature that allows restricting system
calls that applications can use, by doing that it reduces their attack surface. With seccomp a
process can perform a one-way transition to a “secure mode”, in that mode the process can just
run the following syscall: read, write, sigreturn and exit. It was merged into the Linux kernel in
version 2.6.12 (released in March 2005).

We can configure seccomp by the libseccomp77, the prctl78 system call and/or the seccomp79
syscall and/or other CLI tools80. Due to its capabilities seccomp is commonly used in sandboxes
like in Docker, LXC, systemd’s sandboxing, kubernetes and even within internet browsers (like
Google Chrome and Mozilla Firefox) as an additional layer of security. By that, seccomp can
help prevent malicious applications from exploiting vulnerabilities or gaining unauthorized
access to resources. Also, it can be used to limit an application’s ability to access the network or
access the file system81 .

Since kernel 4.14 there is also a “/proc” interface for seccomp located at
“/proc/sys/kernel/seccomp”. There we can find “actions_avail” (a read-only list of seccomp
filter return actions supported by the kernel) and “actions_logged” (a read-write list of filter
actions that are allowed to be logged)82. Also, since kernel 4.14 we can log actions returned by
seccomp in the audit log.

In the example shown in the screenshot below we can see how we can block a syscall (mkdir) by
passing the relevant parameters to docker which uses seccomp83.

83 https://miro.medium.com/max/1100/0*wz0ilbMy8kr6t30y
82 https://man7.org/linux/man-pages/man2/seccomp.2.html
81 https://en.wikipedia.org/wiki/Seccomp
80 https://github.com/david942j/seccomp-tools
79 https://man7.org/linux/man-pages/man2/seccomp.2.html
78 https://man7.org/linux/man-pages/man2/prctl.2.html
77 https://github.com/seccomp/libseccomp

21

Linux Security Modules (LSM)
“Linux Security Modules” (LSM) is a framework which allows the kernel to support various
security modules. It was mainly designed to allow implementation of MAC (Mandatory Access
Control) with minimal changes to the Linux kernel. For now, you should know that MAC is an
organizational-wide security policy that users can’t override (I am going to post about MAC and
DAC in more detail separately).

Despite the name containing “Modules” it is not implemented as loadable kernel modules (“.ko”
files). The LSM framework is of course optional and needs to be enabled by the
CONFIG_SECURITY variable.

If we want to get a list of the running LSMs we just need to read “/sys/kernel/security/lsm” - see
the screenshot below (taken from Ubuntu 22.04.01 LTS). It is a comma separated list, at
minimum it includes the “capabilities system”. The reason for seeing “capabilities” is due to the
fact it was implemented as a “security module”. You can also see the source code for capabilities
including “lsm_hooks.h”84 and thus using different LSM’s enums, macros and functions.

One of the biggest design goals of LSM is to avoid manipulation of the syscall table in order to
implement the “security modules''. It is done in order to avoid issues of race conditions and scale
problems. Having said that, LSM was not created in order to provide a generic
instrumentation/tracing/hooking mechanism for the Linux kernel85.

There are a couple of security features which are implemented as “security modules” like:
AppArmor, SELinux, TOMOYO, LoadPin, LandLock and Smack - part of them appear in the
screenshot below. A detailed explanation about them will be posted separately.

85 https://www.youtube.com/watch?v=RKBBPsp-TZ0
84 https://elixir.bootlin.com/linux/latest/source/security/commoncap.c#L9

22

LoadPin
After talking about LSM86 (“Linux Security Modules”) it is time to show different technologies
which leverage them.The goal of LoadPin is to ensure that all the files the kernel can
load/execute reside on the same filesystem. The idea is that the file system would be based on a
read-only device (for example think about a DVD/CD-ROM/any other RO hardware device, it
could be also software based (but it has its own drawbacks). You can go over the code of
LoadPin87.

Among the kernel files artifacts are: kernel modules, firmware, security policies and kexec
images (kexec is a syscall which enables loading and booting to a different kernel from the
current running one - more on that in a future writeup).

The way it is done is by trapping the kernel’s file reading interface and basically pinning (it for
kernel code loading) to the first file system which is used. Thus, any file that is part of a different
file system will be rejected - As you can see the screenshot below88.

One of the use-cases for using LoadPin is to ensure the integrity of kernel code (such as *.ko
file) without signing them (I will detail kernel module signing in a different writeup). It is
important to note that I am not recommending using/not using LoadPin, my goal is to explain
about it (and leave to the reader what to do with it ;-).

In order to enable LoadPin (which is supported since kernel 4.7) we need to set
CONFIG_SECURITY_LOADPIN before building the kernel. If it is enabled we can also toggle
it using the kernel command line (“loadpin.enforce=0” or “loadpin.enforce=1”).

88 https://www.e-consystems.com/images/LoadPin_not_allow.png
87 https://elixir.bootlin.com/linux/latest/source/security/loadpin/loadpin.c
86 https://medium.com/@boutnaru/linux-security-lsm-linux-security-modules-907bbcf8c8b4

23

SafeSetID
“SafeSetID” is an LSM that was merged in kernel 5.1. The goal of “SafeSetID” is to restrict the
transitions to target UID/GID from current UID/GID based on a system wide whitelist. Thus, it
governs the family of syscalls which allows those types of transitions (like seteuid and setegid. In
general set*uid/set*gid).

One of the most used use-cases for “SafeSetID” is to enable a non-root application to transition
to other untrusted UIDs/GIDs without the need of giving it an uncontrolled CAP_SET{U/G}ID
capabilities89.

It is important to understand that we still grant CAP_SET{U/G}ID capabilities to the non-root
application, however “SafeSetID” allows us to restrict its actions. Thus, we can limit the
application form entering/creating a new user namespace or setting the uid to 0 (root).

The configuration of “SafeSetID” is done using performing manipulation on files residing on a
securityfs mounting point. The relevant files are “safesetid/uid_allowlist_policy” and
“safesetid/gid_allowlist_policy” (the format of adding a policy is ‘<UID>:<UID>’ or
‘<GID>:<GID>’). By the way, on my Ubuntu 22.04 VM securityfs is mounted on
“/sys/kernel/security”.

We can go over the code of “SafeSetID” as part of the source code of the Linux kernel90.
Moreover, you can see on the image below the source code for creating of the configuration files
entries in securityfs91.

91 https://elixir.bootlin.com/linux/latest/source/security/safesetid/securityfs.c#L324
90 https://elixir.bootlin.com/linux/v6.13.7/source/security/safesetid/lsm.c
89 https://medium.com/@boutnaru/linux-security-capabilities-part-1-63c6d2ceb8bf

24

Yama
“Yama” is an LSM that was merged in kernel 3.4. The goal of “Yama” is to restrict the usage of
the “ptrace” syscall (“man 2 ptrace”). Limiting the usage of “ptrace” is one way to isolate
between running applications, thus even in case one application is breached it won’t be able to
attach to other running applications (like browsers, crypto wallets, encryption apps, remote
connection session and more) and read/write to sensitive data or change the flow. In order to
include “Yama” the CONFIG_SECURITY_YAMA should be enabled while building the kernel.
The configuration of “Yama” could be configured at runtime using “/proc/sys/kernel/yama”,
which includes “ptrace_scope” (as shown in the screenshot below).

Based on the kernel documentation92 “ptrace_scope” can hold 4 different values (0-3). “0”
(“classic ptrace permissions”) allows attaching to any running application with the same uid
unless it was marked as undumpable. “1” (“restricted ptrace”) allows attaching to running
applications based on their relationship, by default only descendants applications could be
attached to (you can also change the behavior of the relationship using “prctl” syscall with the
option “PR_SET_TRACER”). “2” (“admin-only attach”) allows attaching only from applications
holding the “CAP_SYS_PTRACE” capability. “3” (“no attach”) blocks all running applications
from attaching to any other running application.

A demonstration of the different values described earlier and their relevant impact on “ptrace” is
shown in the screenshot below (just as a reminder “strace” leverages the “ptrace” syscall for
attaching running applications). You can go over the code of “Yama'' as part of the Linux kernel
source code93.

93 https://elixir.bootlin.com/linux/v6.13.7/source/security/yama/yama_lsm.c
92 https://www.kernel.org/doc/html/v4.15/admin-guide/LSM/Yama.html

25

Keyrings
When writing an application sometimes a need for storing sensitive data elements (like tokens,
passwords and cryptographic keys) arises. For that Linux provides “keyrings” which is a data
store that allows applications to access data securely without exposing it to other
applications/processes/users. Based on the man page “kerings” is an in-kernel key management
and retention facility94. Overall, “keyrings” are used by different types of applications such as
authentication servers, web servers and database servers. Examples for those types are:
MySQL95.

In order to use “keyrings” we can leverage on of the following syscalls: “add_key()”96,
“request_key()”97 or “keyctl()”98. Each key has several attributes as follows: serial number (ID),
type, description (name), payload (data), access rights, expression time and reference count. The
types of keys which are supported are: “keyring”, “user”, “logon” and “big_key”99.They are
different libraries/modules in a variety of programming languages that enable programmers to
read/write data into/from keyring. An example in Python is shown in the screen below.

Moreover, there are different entries in proc that give us information about the keyrings, we are
going to focus only on two. “/proc/keys” which is relevant since kernel 2.6.10, it displays all the
keys the reading thread has view permissions. “/proc/key-users” which is also relevant since
kernel 2.6.10, that shows various information for each uid that has at least one key on the
system100. Lastly, we can also go over the kernel code that handles keyring101. Also there is
“keyutils” which is a library and a set of utilities that allows access to the in-kernel keyrings
facility102.

102 https://man7.org/linux/man-pages/man7/keyutils.7.html
101 https://elixir.bootlin.com/linux/latest/source/security/keys/keyring.c
100 https://man7.org/linux/man-pages/man7/keyrings.7.html
99 https://man7.org/linux/man-pages/man7/keyrings.7.html
98 https://man7.org/linux/man-pages/man2/keyctl.2.html
97 https://man7.org/linux/man-pages/man2/request_key.2.html
96 https://man7.org/linux/man-pages/man2/add_key.2.html
95 https://dev.mysql.com/doc/refman/8.0/en/keyring.html
94 https://man7.org/linux/man-pages/man7/keyrings.7.html

26

AppArmor (Application Armor)
“AppArmor” (Application Armor) is an LSM103 which allows an administrator to create a
per-program profile which restricts what an application can do. It basically provides an extension
for the DAC (Discretionary Access Control) under Linux by providing MAC (Mandatory Access
Control), which constrains a user (subject) can perform on a operating system object104.

Moreover, one of the differences between “AppArmor” and other MAC systems is that it is
path-based. AppArmor’s security model is bound to access control attributes granted to specific
programs and not users. It was first seen in Immunix and later included in Linux distributions
like Ubuntu105. Thus, profiles contain the lists of access control rules which are loaded and used
by “AppArmor”. By default, in Ubuntu those profiles are stored in “/etc/apparmor.d”106. We can
use the “apparmor_status” command to know what profiles are loaded and the current status107.

In every profile there are two main types of rules: “path entries” and “capability entries”. “Path
Entries” define which files an application can access in the file system. “Capability Entries”
define what privileges a confined process is allowed to use. An example of a profile for
“/bin/ping” is shown in the screenshot below108.

Also, “AppArmor” core functionality is part of the Linux mainline since kernel 2.6.3.6109. You
can also go over the source code of “AppArmor” as part of the Linux source code in
“/security/apparmor”110. In order to enable “AppArmor” we need set
“CONFIG_SECURITY_APPARMOR=y”, we will still need to install also the usermode tools111.
By the way, “AppArmor” is seen as an alternative to “SELinux”112.

112 https://www.kernel.org/doc/html/v4.15/admin-guide/LSM/apparmor.html
111 https://elixir.bootlin.com/linux/v6.4.12/source/security/apparmor/Kconfig#L2
110 https://elixir.bootlin.com/linux/v6.4.12/source/security/apparmor
109 https://elixir.bootlin.com/linux/v2.6.36/source/security/apparmor
108 https://ubuntu.com/server/docs/security-apparmor
107 https://manpages.debian.org/unstable/apparmor/apparmor_status.8.en.html
106 https://linuxhint.com/apparmor-profiles-ubuntu/
105 https://wiki.ubuntu.com/AppArmor
104 https://en.wikipedia.org/wiki/AppArmor
103 https://medium.com/@boutnaru/linux-security-lsm-linux-security-modules-907bbcf8c8b4

27

Primary Groups
Overall, a group is a convenient way to combine users/other groups as one entity in order to
manage them as a single unit (such as with permissions). The goal of a primary group is that the
operating system can assign it to files/directories that the user is creating113.

Overall, GID (group identifier) is used in order to uniquely identify the primary group ID that the
user belongs to. By the way, we can see it using the “id”114 command (it is the data which follows
“gid=”), or by using the “-gn” switch - as shown in the screenshot below115.

Moreover, we can change it using the “usermod” tool116, it is important to know that for the
change to be visible we need to login again - as shown in the screenshot below. We can also see
it as the first group in the output of the “groups”117 command - as also shown in the screenshot
below. The information about the primary groups is saved as part of “/etc/passwd”118. Lastly, a
user can be part of only one primary group at a time. In parallel the information about the
secondary groups is saved in “/etc/group”.

.

118 https://man7.org/linux/man-pages/man5/passwd.5.html
117 https://man7.org/linux/man-pages/man1/groups.1.html
116 https://linux.die.net/man/8/usermod
115 https://unix.stackexchange.com/questions/410367/how-to-get-the-primary-group-of-a-user
114 https://man7.org/linux/man-pages/man1/id.1.html
113 https://www.baeldung.com/linux/primary-vs-secondary-groups

28

Secondary Group
In general, we can divide the groups in Linux to two main types: primary119 and secondary. A
secondary group is one/more groups which a user is also part of in parallel to the primary
group120.

Thus, when creating a new user with the “useradd”121 command the user is added to a new
primary group which has the same name as the user. In order to create new groups we can use the
“groupadd”122 command - as shown in the screenshot below. When adding users to groups we
can use the “gpasswd”123, those are added as secondary groups- as also shown in the screenshot
below.

Lastly, the configuration of secondary groups is stored in “/etc/group”124. We can also say that
secondary groups are those groups which already created users are added125.

125 https://www.networkworld.com/article/3409781/mastering-user-groups-on-linux.html
124 https://www.baeldung.com/linux/primary-vs-secondary-groups
123 https://linux.die.net/man/1/gpasswd
122 https://linux.die.net/man/8/groupadd
121 https://linux.die.net/man/8/useradd
120 https://unix.stackexchange.com/questions/605531/primary-vs-secondary-groups-in-linux
119 https://medium.com/@boutnaru/the-linux-security-journey-primary-groups-de2b4d6bd27b

29

ACL (Access Control Lists)
In general, ACL (Access Control Lists) provides the ability to set permissions to a file/directory
in a more granular way then the normal Linux file permissions126. This can be done without
changing the ownership or the granular Linux permissions127.

Overall, in order to set or retrieve a file access control list we can use the “getfacl”128 and the
“setfacl”129. command line utilities - as shown in the screenshot below. In case the filesystem
does not support ACL or the feature is not enabled an error of “operation not supported” is
returned.

Lastly, to enable ACL we need to mount the filesystem with the “acl” option (for example this
can be done using fstab entries)130. We can also use “tune2fs” for listing the default mounting
options of a filesystem, by default in case of btrfs and ext2/3/4 the acl option is enabled131. In
case acl is configured of a file a “+” character appears in the output of “ls -l”132 - as shown in the
screenshot below.

132 https://man7.org/linux/man-pages/man1/ls.1.html
131 https://linux.die.net/man/8/tune2fs
130 https://wiki.archlinux.org/title/Access_Control_Lists
129 https://linux.die.net/man/1/setfacl
128 https://linux.die.net/man/1/getfacl
127 https://www.redhat.com/sysadmin/linux-access-control-lists
126 https://medium.com/@boutnaru/the-linux-security-journey-file-permissions-033cb3ce8547

30

PAM (Pluggable Authentication Module)
The goal of PAM (Pluggable Authentication Module) is to separate the task of authentication for
applications (for example login, sshd, ftpd and gdm). This is to avoid the need for every
developer to code his own authentication checks. PAM supports local user authentication and
also authentication of users defined in a centralized location (for example leveraging the
kerberos protocol). A user can enter a username and password/certificate/fingerprint and this
information is authenticated using the correct method133.

Overall, the different applications are linked with the “libpam.so” library - as shown in the
screenshot below. The functions in this library provide for PAM134. An example function is the
“pam_authenticate” which is used for authenticating users. In case of successful completion, the
function returns PAM_SUCCESS135.

Lastly, the configuration of PAM is stored by default at “/etc/pam.conf”. Also, the configuration
of PAM can be stored as the content of the “ /etc/pam.d/” directory. In case the directory exists
Linux-PAM ignores the “/etc/pam.conf”136. We can also go over the code of PAM for more
information137.

137 https://github.com/linux-pam/linux-pam
136 https://linux.die.net/man/5/pam.d
135 https://linux.die.net/man/3/pam_authenticate
134 https://docs.oracle.com/cd/E36784_01/html/E36873/libpam-3lib.html
133 https://www.redhat.com/sysadmin/pluggable-authentication-modules-pam

31

Capabilities
Historically, Linux has had two levels of permissions relevant from process: low privilege
(effective uid is not 0) and high privilege (effective uid is 0, aka root). Since kernel 2.2 Linux has
broken up the high privileges of the root user into smaller distinct units called capabilities.We
can assign only selected capabilities for a process/executable without the need to give the full
root access. Thus, limiting the risk due to the reduction in the set of privileges granted.

Overall, there are 5 capabilities sets for a task (process or thread): CapEff (Effective
Capabilities), CapPrm (Permitted Capabilities), CapInh (Inherited Capabilities), CapBnd
(Bounding Set) and CapAmb (Ambient Capabilities Set). Let us go over each of these.
CapEff, this set represents all the capabilities the process is using at a specific moment in time.
Those are the privileges which the kernel performs permission checks on.

CapPrm, this set is a superset which acts as a limiting boundary for the effective set. Those
capabilities which are not set cannot be enabled in the effective set (they are some edge cases
that we are going to talk about in the following write-up).
CapInh, specifies all the capabilities allowed to be inherited from parent to child, after a call to
execve syscall (for privilege process/threads).

CapBnd, by using this we can block capabilities that we don’t want a process to receive, only
those that are in the set will be allowed in the permitted and inherited sets.
CapAmb, applies to non-suid (non privileged) executables that don’t have file capabilities (more
about it in the next write-up). The goal is to keep capabilities in case of calling the execve syscall
family. It is important to know that not all the capabilities in the set can be kept like those which
are dropped if they are not in the inheritable/permitted capability set.
In order to see the different sets for a task we can read the file “/proc/[pid]/status” (for a process)
or “/proc/[pid]/task/[tid]/status” (for a specific thread) — as shown in the screenshot below
(taken from a copy.sh).

There are different capabilities such as: CAP_AUDIT_LOG (gives the ability to write data to the
kernel audit log), CAP_CHOWN (gives the ability to change the GIDs and UIDs of files),
CAP_DAC_OVERRIDE (bypasses the permissions of files [r/w/x]) and more. To see the list of
capabilities and the kernel version which they are relevant for please checkout “man
capabilities”.

32

33

https://medium.com/tag/linux?source=post_page-----63c6d2ceb8bf---------------linux-----------------

chroot (Change Root Directory)
chroot is a Linux system call which allows changing the root directory of a calling process to a
specific path. After doing so the directory will be used for the path names beginning with “/”.
The changed root directory is inherited to all children of the calling process. By the way, only
privileged processes can call “chroot” - root or with “CAP_SYS_CHROOT” in its user
namespace138.

Moreover, there are different use case (which are not joust security related) for using chroot like:
rebuilding initramfs image, reinstalling a bootloader, upgrading/downgrading a package and
more139. By the way, we can use the “chroot” CLI tool (and not the system call) for preventing
access outside the new root directory140 - as shown in the screenshot below. It is recommended to
go over the implementation of the “chroot” syscall141.

 Lastly, we can think about “chroot” as a mitigation/hardening feature (and not a security feature)
due to the fact there are specific ways to bypass it142. We can find it in use when creating
sandboxed environments143 - they are better solutions than just using “chroot” as described in
future writeups (namespaces and seccomp as an example). An example for that is “wu-ftpd”
which can run in a chrooted environment for anonymous users144.

144 https://www.ariadne.ac.uk/issue/20/unix/
143 https://www.lenovo.com/us/en/glossary/what-is-chroot/
142 https://www.redhat.com/en/blog/chroot-security-feature
141 https://elixir.bootlin.com/linux/v6.5.5/source/fs/open.c#L593
140 https://linux.die.net/man/1/chroot
139 https://wiki.archlinux.org/title/chroot
138 https://man7.org/linux/man-pages/man2/chroot.2.html

34

NetFilter
NetFilter is a “Free and Open Source” (FOSS) project that provides packet filtering software for
Linux (kernel 2.4 version and later). The main features provided by NetFilter are: stateless
packet filtering (IPv4/IPv6), stateful packet filtering (IPv4/IPv6), different kinds of network/port
address translations (NAT/PAT), packet logging, userspace packet queuing and other packet
mangaling145. Thus, NetFilter is used for creating Firewalls (stateless/stateful), NAT based
transparent proxies and other packet manipulation technologies.

One of the most important features of NetFilter is “Connection Tracking”. It allows the kernel to
keep track of all the sessions/network connections in order to relate all the packets that make up
a connection146. We can interface with the connection tracking feature using the “conntrack” CLI
tool147.

Moreover, NetFilter provides “netfilter hooks” which enables using callbacks to provide filtering
inside the Linux kernel. There are five different types of “netfilter hooks”: “Pre-Routing”,
“Input”, “Forward”, “Output” and “Post-Routing” - as shown in the diagram below148.

Lastly, there are different tools that leverage NetFilter like: iptables, arptables, ebtables and
nftables (more on them in future writeups). We can also go over the source code of “NetFilter” as
part of the Linux kernel149.

149 https://elixir.bootlin.com/linux/v6.5.5/source/net/netfilter
148 https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks
147 https://manpages.ubuntu.com/manpages/trusty/man8/conntrack.8.html
146 https://en.wikipedia.org/wiki/Netfilter
145 https://www.netfilter.org/

35

Chains (iptables)
In general “iptables” is an administration tool used IPv4/6 packet filtering and NAT150. “iptables”
uses a series of rules that are organized into chains, in order to handle network traffic. Overall
there are 5 built-in chains: PREROUTING, INPUT, FORWARD, OUTPUT and
POSTROUTING. Those chains are based on the NetFilter’s hooks callbacks151. We can also see
that in the source code both for IPv4152 and IPv6153.

Moreover, we can also create user defined chains using the following command “sudo iptables
-N CHAIN_NAME”. After we created the chain we can add new rules (more on rules in a future
writeup) for it by specifying the chain name with the “-A” switch in “iptables” - as shown in the
screenshot below. In order to move to another chain we need to use a “Jump Target” , which
causes the evaluation to be done on a different chain for additional processing154. More on the
different targets which are available in a future writeup. Lastly, we also have chains in other
networking tools like “ebtables”

154 https://www.digitalocean.com/community/tutorials/a-deep-dive-into-iptables-and-netfilter-architecture#jumping-to-user-defined-chains
153 https://elixir.bootlin.com/linux/v6.5.5/source/net/ipv6/netfilter/ip6_tables.c#L149
152 https://elixir.bootlin.com/linux/v6.5.5/source/net/ipv4/netfilter/ip_tables.c#L124
151 https://medium.com/@boutnaru/the-linux-security-journey-netfilter-90c6cf12ca40
150 https://linux.die.net/man/8/iptables

36

Table Types (iptables)
In general “iptables” is an administration tool used IPv4/6 packet filtering and NAT155. “iptables”
is based on different types of tables: FILTER, RAW, NAT and MANGLE. By the way, there is
also the SECURITY table used to set internal SELinux security context on packets. The goal of
the tables is to hold rules based on the area of concern we want to evaluate packets156.

Overall, the rules on a specific table are organized into “chains”157. We can say that rules are
clustered in “tables” based on their goal and “chains” represent the netfilter hooks which are
going to trigger the rules. It is time to elaborate on each of the tables.

Filter table is used for controlling if a packet can get to its destination or not. It is the most used
type for creating firewalls (which filters packets). A type of a NAT table is used for network
address translation rules (think about deciding how to modify the destination/source IP address
of a packet). We can use a table of type MANGLE for altering the IP header of a packet in the
sense of changing the TTL/Type of service/internal mark for further processing158.

Lastly, the RAW type can be used for avoiding the use of the connection tracking capability of
“iptables”. For better understanding we can see the relationship between “tables” and “chains” in
the illustration below159.

159 https://oracle-patches.com/en/os/iptables-tutorial-how-it-works-clear-explanation-with-examples
158 https://www.linuxadictos.com/en/iptables-tipos-de-tablas.html
157 https://medium.com/@boutnaru/the-linux-security-journey-iptables-chains-5b31d1eb6b53
156 https://www.digitalocean.com/community/tutorials/a-deep-dive-into-iptables-and-netfilter-architecture#relationships-between-chains-and-tables
155 https://linux.die.net/man/8/iptables

37

nftables
nftabes is the replacement of the legacy “*tables” tools (iptables/ip6tables/arptabels/ebtables). It
is the modern Linux kernel packet classification framework. nftables has been available since
version 3.13 of the Linux kernel which was released on 2014160.

Overall, the creation of nftables is due to different limitations both at the functional and code
design level. The core design of nftables is based on a pseudo-virtual machine inspired by BPF -
an example is shown in the screenshot below161. There is a backward compatibility regarding
iptables, thus we can use the specific versions of iptables/iptables utilities that are able to convert
iptables rules to nftables bytecode162.

Moreover, among the differences between iptables and nftables we can include that: nftables
users a new syntax, a single nftables rule can take multiple actions, support for new protocols
without the need for a kernel update, no built-in counter per chain/rule, Support for
concatenations (since kernel 4.1) tables/chains a fully configurable, simplified dual stack for
IPv4/6 administration and better support for dynamic rule set updates163.

Lastly, new Linux distributions use nftables as the recommended/default firewalling
framework164. The user-mode command line tool for managing nftables is “nft”. We can
summarize that ntfables is a project of netfilter providing firewalling/NAT/packet mangling
capabilities for Linux165.

165 https://netfilter.org/projects/nftables/
164 https://wiki.debian.org/nftables
163 https://wiki.nftables.org/wiki-nftables/index.php/What_is_nftables%3F
162 https://kernelnewbies.org/Linux_3.13#head-f628a9c41d7ec091f7a62db6a49b8da50659ec88
161 https://wiki.nftables.org/wiki-nftables/index.php/Ruleset_debug/VM_code_analysis
160 https://elixir.bootlin.com/linux/v3.13-rc1/source/net/netfilter/nf_tables_core.c

38

Secure Execution Mode
In general, a binary is executed in “Secure Execution Mode” in case the “AT_SECURE” entry of
the auxiliary vector166 contains a non-zero value. They are different cases that causes this value to
be non zero such as: a LSM167 has set the value, the “real uid”168 and the “effective uid”169 of the
task/process differ (and the same for the groups values), a non-root user executed a binary which
conferred capabilities to the process170.

Overall, secure execution mode is a feature of the dynamic linker/loader. In case it is enabled
specific environment variables are ignored when executing a binary. Examples of such variables
are: “LD_LIBRARY_PATH”, “LD_DEBUG” (unless /etc/suid-debug exists),
“LD_DEBUG_OUTPUT”, “LD_DEBUG_WEAK” (since glibc 2.3.4), “LD_ORIGIN_PATH”,
“LD_PROFILE” (since glibc 2.2.5), “LD_SHOW_AUXV” (since glibc 2.3.4) and
“LD_AUDIT”171 - as shown in the screenshot below.

Lastly, the goal of the secure execution mode is to block the ability of causing a binary which
can be executed with “setuid”/setgid” to load/executed arbitrary code and thus perform a
privilege escalation (due to the fact it is executed by one user but executed with the permissions
of another user which case also be root).

171 https://manpages.ubuntu.com/manpages/focal/en/man8/ld.so.8.html
170 https://man7.org/linux/man-pages/man8/ld.so.8.html
169 https://medium.com/@boutnaru/the-linux-security-journey-euid-effective-user-id-65f351532b79
168 https://medium.com/@boutnaru/the-linux-security-journey-ruid-real-user-id-b23abcbca9c6
167 https://medium.com/@boutnaru/linux-security-lsm-linux-security-modules-907bbcf8c8b4
166 https://medium.com/@boutnaru/linux-the-auxiliary-vector-auxv-cba527871b50

39

su (Substitute User)
“su” (Substitute User) is a utility as part of the Linux ecosystem which is used for running
commands with the privileges of another user (by default the root user). This command allows us
to switch to a specific account that we want in the current login session even if the user is not
allowed to login using SSH/using GUI display manager172.

Overall, when switching to another user (su [USERNAME]) we need to know the password of
that target user. However, if we have root privileges we can switch to whatever user we want
without the need of knowing the target user’s password - as shown in the screenshot below. The
substitution is done by setting the user id with the “setuid”\”setuid32” syscall173.

Lastly, we can also execute a specific command as a different user using the following pattern
“su - [USERNAME] -c [COMMAND]”. For enhanced security we should restrict su access, add
additional settings with PAM (Pluggable Authentication Modules) and configure logging and
monitoring both locally and remotely174.

174 https://labex.io/tutorials/nmap-how-to-defend-against-su-command-attacks-420285
173 https://linux.die.net/man/2/setuid32
172 https://linuxize.com/post/su-command-in-linux/

40

	
	Introduction
	UID (User Identifier)
	
	RUID (Real User ID)
	
	EUID (Effective User ID)
	SUID (Saved User ID)
	GID (Group Identifier)
	
	EGID (Effective Group ID)
	RGID (Real Group ID)
	
	SGID (Saved Group ID)
	
	
	File Permissions
	
	umask (Set File Mode Creation Mask)
	
	File Permissions are Not Cumulative
	
	Sticky Bit
	SUID Bit (Set User ID)
	SGID Bit (Set Group ID)
	
	ASLR (Address Space Layout Randomization)
	
	ASLR in Statically Linked ELFs
	
	SAS (Secure Attention Sequence)
	
	Secure Computing Mode (seccomp)
	Linux Security Modules (LSM)
	LoadPin
	SafeSetID
	Yama
	Keyrings
	AppArmor (Application Armor)
	
	Primary Groups
	Secondary Group
	ACL (Access Control Lists)
	PAM (Pluggable Authentication Module)
	
	Capabilities
	
	
	
	
	
	chroot (Change Root Directory)
	NetFilter
	
	Chains (iptables)
	Table Types (iptables)
	nftables
	Secure Execution Mode
	
	su (Substitute User)

